==================== Manipulating Spectra ==================== While there are myriad ways you might want to alter a spectrum, :ref:`specutils ` provides some specific functionality that is commonly used in astronomy. These tools are detailed here, but it is important to bear in mind that this is *not* intended to be exhaustive - the point of :ref:`specutils ` is to provide a framework you can use to do your data analysis. Hence the functionality described here is best thought of as pieces you might string together with your own functionality to build a tailor-made spectral analysis environment. In general, however, :ref:`specutils ` is designed around the idea that spectral manipulations generally yield *new* spectrum objects, rather than in-place operations. This is not a true restriction, but is a guideline that is recommended primarily to keep you from accidentally modifying a spectrum you didn't mean to change. Smoothing --------- Specutils provides smoothing for spectra in two forms: 1) convolution based using smoothing `astropy.convolution` and 2) median filtering using the :func:`scipy.signal.medfilt`. Each of these act on the flux of the :class:`~specutils.Spectrum1D` object. .. note:: Specutils smoothing kernel widths and standard deviations are in units of pixels and not ``Quantity``. Convolution Based Smoothing ^^^^^^^^^^^^^^^^^^^^^^^^^^^ While any kernel supported by `astropy.convolution` will work (using the `~specutils.manipulation.convolution_smooth` function), several commonly-used kernels have convenience functions wrapping them to simplify the smoothing process into a simple one-line operation. Currently implemented are: :func:`~specutils.manipulation.box_smooth` (:class:`~astropy.convolution.Box1DKernel`), :func:`~specutils.manipulation.gaussian_smooth` (:class:`~astropy.convolution.Gaussian1DKernel`), and :func:`~specutils.manipulation.trapezoid_smooth` (:class:`~astropy.convolution.Trapezoid1DKernel`). Note that, although these kernels are 1D, they can be applied to higher-dimensional data (e.g. spectral cubes), in which case the data will be smoothed only along the spectral dimension. .. code-block:: python >>> from specutils import Spectrum1D >>> import astropy.units as u >>> import numpy as np >>> from specutils.manipulation import box_smooth, gaussian_smooth, trapezoid_smooth >>> spec1 = Spectrum1D(spectral_axis=np.arange(1, 50) * u.nm, ... flux=np.random.default_rng(12345).random(49)*u.Jy) >>> spec1_bsmooth = box_smooth(spec1, width=3) >>> spec1_gsmooth = gaussian_smooth(spec1, stddev=3) >>> spec1_tsmooth = trapezoid_smooth(spec1, width=3) >>> gaussian_smooth(spec1, stddev=3) # doctest: +FLOAT_CMP (length=49))> Each of the specific smoothing methods create the appropriate `astropy.convolution.convolve` kernel and then call a helper function :func:`~specutils.manipulation.convolution_smooth` that takes the spectrum and an astropy 1D kernel. So, one could also do: .. code-block:: python >>> from astropy.convolution import Box1DKernel >>> from specutils.manipulation import convolution_smooth >>> box1d_kernel = Box1DKernel(width=3) >>> spec1 = Spectrum1D(spectral_axis=np.arange(1, 50) * u.nm, ... flux=np.random.default_rng(12345).random(49) * u.Jy) >>> convolution_smooth(spec1, box1d_kernel) # doctest: +FLOAT_CMP (length=49))> In this case, the ``spec1_bsmooth2`` result should be equivalent to the ``spec1_bsmooth`` in the section above (assuming the flux data of the input ``spec`` is the same). Note that, as in the case of the kernel-specific functions, a 1D kernel can be applied to a multi-dimensional spectrum and will smooth that spectrum along the spectral dimension. In the case of :func:`~specutils.manipulation.convolution_smooth`, one can also input a higher-dimensional kernel that matches the dimensionality of the data. The uncertainties are propagated using a standard "propagation of errors" method, if the uncertainty is defined for the spectrum *and* it is one of StdDevUncertainty, VarianceUncertainty or InverseVariance. But note that this does *not* consider covariance between points. Median Smoothing ^^^^^^^^^^^^^^^^ The median based smoothing is implemented using `scipy.signal.medfilt` and has a similar call structure to the convolution-based smoothing methods. This method applys the median filter across the flux. .. note:: This method is not flux conserving and errors are not propagated. .. code-block:: python >>> from specutils.manipulation import median_smooth >>> spec1 = Spectrum1D(spectral_axis=np.arange(1, 50) * u.nm, ... flux=np.random.default_rng(12345).random(49) * u.Jy) >>> median_smooth(spec1, width=3) # doctest: +FLOAT_CMP (length=49))> Resampling ---------- :ref:`specutils ` contains several classes for resampling the flux in a :class:`~specutils.Spectrum1D` object. Currently supported methods of resampling are integrated flux conserving with :class:`~specutils.manipulation.FluxConservingResampler`, linear interpolation with :class:`~specutils.manipulation.LinearInterpolatedResampler`, and cubic spline with :class:`~specutils.manipulation.SplineInterpolatedResampler`. Each of these classes takes in a :class:`~specutils.Spectrum1D` and a user defined output dispersion grid, and returns a new :class:`~specutils.Spectrum1D` with the resampled flux. Currently the resampling classes expect the new dispersion grid unit to be the same as the input spectrum's dispersion grid unit. Additionally, all resamplers take an optional ``extrapolation_treatment`` keyword which can be ``nan_fill``, ``zero_fill``, or ``truncate``, to determine what to do with output wavelength bins that have no overlap with the original spectrum. If the input :class:`~specutils.Spectrum1D` contains an uncertainty, :class:`~specutils.manipulation.FluxConservingResampler` will propogate the uncertainty to the final output :class:`~specutils.Spectrum1D`. However, the other two implemented resampling classes (:class:`~specutils.manipulation.LinearInterpolatedResampler` and :class:`~specutils.manipulation.SplineInterpolatedResampler`) will ignore any input uncertainty. Here's a set of simple examples showing each of the three types of resampling: .. plot:: :include-source: :align: center :context: close-figs First are the imports we will need as well as loading in the example data: >>> from astropy.io import fits >>> from astropy import units as u >>> import numpy as np >>> from matplotlib import pyplot as plt >>> from astropy.visualization import quantity_support >>> quantity_support() # for getting units on the axes below # doctest: +IGNORE_OUTPUT >>> filename = 'https://data.sdss.org/sas/dr16/sdss/spectro/redux/26/spectra/1323/spec-1323-52797-0012.fits' >>> # The spectrum is in the second HDU of this file. >>> with fits.open(filename) as f: # doctest: +IGNORE_OUTPUT +REMOTE_DATA ... specdata = f[1].data[1020:1250] # doctest: +REMOTE_DATA Then we re-format this dataset into astropy quantities, and create a `~specutils.Spectrum1D` object: >>> from specutils import Spectrum1D >>> lamb = 10**specdata['loglam'] * u.AA # doctest: +REMOTE_DATA >>> flux = specdata['flux'] * 10**-17 * u.Unit('erg cm-2 s-1 AA-1') # doctest: +REMOTE_DATA >>> input_spec = Spectrum1D(spectral_axis=lamb, flux=flux) # doctest: +REMOTE_DATA >>> f, ax = plt.subplots() # doctest: +IGNORE_OUTPUT +REMOTE_DATA >>> ax.step(input_spec.spectral_axis, input_spec.flux) # doctest: +IGNORE_OUTPUT +REMOTE_DATA .. plot:: :include-source: :align: center :context: close-figs Now we show examples and plots of the different resampling currently available. >>> from specutils.manipulation import FluxConservingResampler, LinearInterpolatedResampler, SplineInterpolatedResampler >>> new_disp_grid = np.arange(4800, 5200, 3) * u.AA Flux Conserving Resampler: >>> fluxcon = FluxConservingResampler() >>> new_spec_fluxcon = fluxcon(input_spec, new_disp_grid) # doctest: +IGNORE_OUTPUT +REMOTE_DATA >>> f, ax = plt.subplots() # doctest: +IGNORE_OUTPUT >>> ax.step(new_spec_fluxcon.spectral_axis, new_spec_fluxcon.flux) # doctest: +IGNORE_OUTPUT +REMOTE_DATA .. plot:: :include-source: :align: center :context: close-figs Linear Interpolation Resampler: >>> linear = LinearInterpolatedResampler() >>> new_spec_lin = linear(input_spec, new_disp_grid) # doctest: +REMOTE_DATA >>> f, ax = plt.subplots() # doctest: +IGNORE_OUTPUT >>> ax.step(new_spec_lin.spectral_axis, new_spec_lin.flux) # doctest: +IGNORE_OUTPUT +REMOTE_DATA .. plot:: :include-source: :align: center :context: close-figs Spline Resampler: >>> spline = SplineInterpolatedResampler() >>> new_spec_sp = spline(input_spec, new_disp_grid) # doctest: +REMOTE_DATA >>> f, ax = plt.subplots() # doctest: +IGNORE_OUTPUT >>> ax.step(new_spec_sp.spectral_axis, new_spec_sp.flux) # doctest: +IGNORE_OUTPUT +REMOTE_DATA Splicing/Combining Multiple Spectra ----------------------------------- The resampling functionality detailed above is also the default way :ref:`specutils ` supports splicing multiple spectra together into a single spectrum. This can be achieved as follows: .. plot:: :include-source: :align: center :context: close-figs >>> spec1 = Spectrum1D(spectral_axis=np.arange(1, 50) * u.micron, flux=np.random.randn(49)*u.Jy) >>> spec2 = Spectrum1D(spectral_axis=np.arange(51, 100) * u.micron, flux=(np.random.randn(49)+1)*u.Jy) >>> new_spectral_axis = np.concatenate([spec1.spectral_axis.value, spec2.spectral_axis.to_value(spec1.spectral_axis.unit)]) * spec1.spectral_axis.unit >>> resampler = LinearInterpolatedResampler(extrapolation_treatment='zero_fill') >>> new_spec1 = resampler(spec1, new_spectral_axis) >>> new_spec2 = resampler(spec2, new_spectral_axis) >>> final_spec = new_spec1 + new_spec2 Yielding a spliced spectrum (the solid line below) composed of the splice of two other spectra (dashed lines):: >>> f, ax = plt.subplots() # doctest: +IGNORE_OUTPUT >>> ax.step(final_spec.spectral_axis, final_spec.flux, where='mid', c='k', lw=2) # doctest: +IGNORE_OUTPUT >>> ax.step(spec1.spectral_axis, spec1.flux, ls='--', where='mid', lw=1) # doctest: +IGNORE_OUTPUT >>> ax.step(spec2.spectral_axis, spec2.flux, ls='--', where='mid', lw=1) # doctest: +IGNORE_OUTPUT Uncertainty Estimation ---------------------- Some of the machinery in :ref:`specutils ` (e.g. `~specutils.analysis.snr`) requires an uncertainty to be present. While some data reduction pipelines generate this as part of the reduction process, sometimes it's necessary to estimate the uncertainty in a spectrum using the spectral data itself. Currently :ref:`specutils ` provides the straightforward `~specutils.manipulation.noise_region_uncertainty` function. First we build a spectrum like that used in :doc:`analysis`, but without a known uncertainty: .. code-block:: python >>> from astropy.modeling import models >>> spectral_axis = np.linspace(10, 1, 200) * u.GHz >>> spectral_model = models.Gaussian1D(amplitude=3*u.Jy, mean=5*u.GHz, stddev=0.8*u.GHz) >>> flux = spectral_model(spectral_axis) >>> flux += np.random.default_rng(42).normal(0., 0.2, spectral_axis.shape) * u.Jy >>> noisy_gaussian = Spectrum1D(spectral_axis=spectral_axis, flux=flux) Now we estimate the uncertainty from the region that does *not* contain the line: .. code-block:: python >>> from specutils import SpectralRegion >>> from specutils.manipulation import noise_region_uncertainty >>> noise_region = SpectralRegion([(10, 7), (3, 0)] * u.GHz) >>> spec_w_unc = noise_region_uncertainty(noisy_gaussian, noise_region) >>> spec_w_unc.uncertainty[::20] # doctest: +FLOAT_CMP StdDevUncertainty([0.17501999, 0.17501999, 0.17501999, 0.17501999, 0.17501999, 0.17501999, 0.17501999, 0.17501999, 0.17501999, 0.17501999]) Or similarly, expressed in pixels: .. code-block:: python >>> noise_region = SpectralRegion([(0, 25), (175, 200)]*u.pix) >>> spec_w_unc = noise_region_uncertainty(noisy_gaussian, noise_region) >>> spec_w_unc.uncertainty[::20] # doctest: +FLOAT_CMP StdDevUncertainty([0.17547552, 0.17547552, 0.17547552, 0.17547552, 0.17547552, 0.17547552, 0.17547552, 0.17547552, 0.17547552, 0.17547552]) S/N Threshold Mask ------------------ It is useful to be able to find all the spaxels in an ND spectrum in which the signal to noise ratio is greater than some threshold. This method implements this functionality so that a `~specutils.Spectrum1D` object, `~specutils.SpectrumCollection` or an :class:`~astropy.nddata.NDData` derived object may be passed in as the first parameter. The second parameter is a floating point threshold. For example, first a spectrum with flux and uncertainty is created, and then call the ``snr_threshold`` method: .. code-block:: python >>> import numpy as np >>> from astropy.nddata import StdDevUncertainty >>> import astropy.units as u >>> from specutils import Spectrum1D >>> from specutils.manipulation import snr_threshold >>> wavelengths = np.arange(0, 10)*u.um >>> rng = np.random.default_rng(42) >>> flux = 100*np.abs(rng.standard_normal(10))*u.Jy >>> uncertainty = StdDevUncertainty(np.abs(rng.standard_normal(10))*u.Jy) >>> spectrum = Spectrum1D(spectral_axis=wavelengths, flux=flux, uncertainty=uncertainty) >>> spectrum_masked = snr_threshold(spectrum, 50) >>> # To create a masked flux array >>> flux_masked = spectrum_masked.flux >>> flux_masked[spectrum_masked.mask] = np.nan The output ``spectrum_masked`` is a shallow copy of the input ``spectrum`` with the ``mask`` attribute set to False where the S/N is greater than 50 and True elsewhere. It is this way to be consistent with ``astropy.nddata``. .. note:: The mask attribute is the only attribute modified by ``snr_threshold()``. To retrieve the masked flux data use ``spectrum.masked.flux_masked``. Shifting -------- In addition to resampling, you may sometimes wish to simply shift the ``spectral_axis`` of a spectrum (a la the ``specshift`` iraf task). There is no explicit function for this because it is a basic transform of the ``spectral_axis``. Therefore one can use a construct like this: .. code-block:: python >>> from specutils import Spectrum1D >>> wavelengths = np.arange(0, 10) * u.um >>> flux = 100 * np.abs(np.random.default_rng(42).standard_normal(10)) * u.Jy >>> spectrum = Spectrum1D(spectral_axis=wavelengths, flux=flux) >>> spectrum # doctest: +FLOAT_CMP (shape=(10,), mean=76.02860 Jy); spectral_axis= (length=10))> >>> shift = 12300 * u.AA >>> new_spec = Spectrum1D(spectral_axis=spectrum.spectral_axis + shift, flux=spectrum.flux) >>> new_spec # doctest: +FLOAT_CMP (shape=(10,), mean=76.02860 Jy); spectral_axis= (length=10))> Replacing a region ------------------ A specific wavelength region of a spectrum can be replaced with a model fitted to that region by using the ``model_replace`` function. By default, the function uses a cubic spline to model the specified region. Alternatively, it can use a previously fitted model from `~astropy.modeling`. The simplest way to use ``model_replace`` is to provide a list or array with the spline knots: .. code-block:: python >>> from specutils.manipulation.model_replace import model_replace >>> wave_val = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) >>> flux_val = np.array([2, 4, 6, 8, 10, 12, 14, 16, 18, 20]) >>> input_spectrum = Spectrum1D(spectral_axis=wave_val * u.AA, flux=flux_val * u.mJy) >>> spline_knots = [3.5, 4.7, 6.8, 7.1] * u.AA >>> result = model_replace(input_spectrum, None, model=spline_knots) >>> result (shape=(10,), mean=11.00000 mJy); spectral_axis= (length=10))> The default behavior is to keep the data outside the replaced region unchanged. Alternatively, the spectrum outside the replaced region can be filled with zeros: .. code-block:: python >>> spline_knots = [3.5, 4.7, 6.8, 7.1] * u.AA >>> result = model_replace(input_spectrum, None, model=spline_knots, extrapolation_treatment='zero_fill') >>> result (shape=(10,), mean=4.40000 mJy); spectral_axis= (length=10))> One can define the spline knots by providing an instance of `~specutils.SpectralRegion`, and the number of knots to be evenly spread along the region: .. code-block:: python >>> from specutils import SpectralRegion >>> region = SpectralRegion(3.5*u.AA, 7.1*u.AA) >>> result = model_replace(input_spectrum, region, model=4) >>> result (shape=(10,), mean=11.00000 mJy); spectral_axis= (length=10))> A model fitted over the region can also be used to replace the spectrum flux values: .. code-block:: python >>> from astropy.modeling import models >>> from specutils.fitting import fit_lines >>> flux_val = np.array([1, 1.1, 0.9, 4., 10., 5., 2., 1., 1.2, 1.1]) >>> input_spectrum = Spectrum1D(spectral_axis=wave_val * u.AA, flux=flux_val * u.mJy) >>> model = models.Gaussian1D(10, 5.6, 1.2) >>> fitted_model = fit_lines(input_spectrum, model) >>> region = SpectralRegion(3.5*u.AA, 7.1*u.AA) >>> result = model_replace(input_spectrum, region, model=fitted_model) >>> result # doctest: +FLOAT_CMP (shape=(10,), mean=2.67887 mJy); spectral_axis= (length=10))> Reference/API ------------- .. automodapi:: specutils.manipulation :no-heading: